Nitrogen Deposition Effects on Denitrification in Humid Tropical Forest Soils

Keywords: nitrous oxide (N_2O) ; *dinitrogen* (N_2) ; *dinitrogen to argon elemental ratio* $(N_2:Ar)$

Denitrification to N_2O and N_2 is one of the most poorly understood fluxes of the terrestrial nitrogen (N) cycle, limiting our ability to constrain N exports from ecosystems to construct reasonable N budgets. This is particularly important in humid tropical forests, which likely have high denitrification ($N_2O + N_2$) rates [1] and are the largest natural terrestrial source of N_2O , a potent greenhouse gas and catalyst for stratospheric ozone depletion [2]. Industrial and agricultural development is rapidly increasing N deposition rates in the tropics [3] and likely to alter denitrification dynamics. Thus, a better understanding of controls on denitrification is critical to predict and reduce the impacts of increasing N deposition in this region.

Denitrification is an anaerobic microbial process responsible for nitrate (NO₃⁻) reduction to N₂O and subsequent N₂O reduction to N₂. Environmental factors, such as NO₃⁻ and oxygen (O₂) availability, influence the ratio of N₂O to N₂ produced by denitrification (N₂O:N₂), thus affecting the relative importance of reactive N₂O or inert N₂ emissions as N loss pathways [4]. Dissimilatory NO₃⁻ reduction to ammonium (DNRA) may compete with denitrification for NO₃⁻ [5], thereby moderating anthropogenic N deposition effects on N₂O emissions. Experimental N additions in humid tropical forests greatly stimulated N₂O emissions [6-9]. However, the effects on denitrification to N₂ are unknown because the high background N₂ concentration in the atmosphere impedes measurement of N₂ production from soils. I will use a novel method for measuring N₂ emissions from upland soils to test the following hypotheses:

Hypothesis 1: Nitrogen deposition to N-rich humid tropical forests increases N_2O emissions through enhanced N cycling rates, decreased competitiveness of DNRA as an alternative fate of NO_3^- , and an increased ratio of N_2O to N_2 produced by denitrification.

Hypothesis 2: Dinitrogen production greatly exceeds net N_2O production from denitrification at low soil O_2 concentrations, so that the relative importance of N_2 versus N_2O emissions will be predicted by soil O_2 availability at an annual scale.

Approach

I have collaborated with Drs. Ralph Keeling (UC-San Diego) and Robert Rhew (UC-Berkeley) to develop the N_2 :Ar method to measure surface N_2 fluxes from upland soils. Argon is

Fig. 1. Surface N₂ flux chamber.

a biologically inert gas found in relatively low atmospheric concentrations; thus, it can serve as a conservative tracer for measuring N₂ production. Keeling et al. [10] developed a mass spectrometry technique to measure changes in atmospheric Ar:N₂ with a precision of 11 per meg (per meg = 10^{-3} per mil). I have modified their sampling protocol to measure surface N₂ fluxes using a closed dynamic chamber (Figure 1). The sensitivity of the method depends on the chamber height to footprint ratio and the sampling period. For example, a 10 cm tall chamber and a 6 hour

sampling period yields a detection limit of 18.0 ng-N cm⁻² hr⁻¹. Using this method, I measured N₂ emissions of 3.4-3.7 μ g-N cm⁻² hr⁻¹ from irrigated and fertilized grasslands at UC-Berkeley [11]. I am continuing to test and refine the N₂:Ar method by comparing N₂ production rates measured by this method and the ¹⁵N and acetylene inhibition methods.

Study Site: I will conduct my research at the Luquillo Experimental Forest (LEF), a NSF-sponsored Long-Term Ecological Research site in Puerto Rico. The study site has little seasonal variation in rainfall (~4000 mm/yr) and temperature (21 °C). Soils are clay-rich ultisols with low NO₃⁻ concentrations and experience frequent and high amplitude fluctuations in soil O₂

concentrations [12]. I will use N fertilized and control plots (n= 3, each 20 m x 20 m) initiated in January 2002 by Dr. William McDowell. Each treatment plot receives 50 kg-N ha⁻¹ yr⁻¹ as NH₄NO₃. To estimate N loading level effects on denitrification, I will establish 9 new plots (5 m x 5 m) in the same watershed that will receive 2, 10, and 50 kg-N ha⁻¹ yr⁻¹ (n=3) as NH₄NO₃.

H1: I will intensively measure field N₂O and N₂ emissions, soil NO₃⁻ and O₂ concentrations, and soil moisture in all plots following four fertilization events. I will use field ¹⁵N tracer experiments to estimate rates of NO₃⁻ supply and utilization via denitrification and DNRA [5]. I expect that denitrification rates will increase with increasing N addition because more N will be cycling through the soil and at faster rates; N₂O:N₂ will also increase with increasing N inputs because NO₃⁻ inhibits N₂O reduction. Furthermore, theory suggests that decreasing labile C to NO₃⁻ ratio favors denitrification over DNRA [14], so I predict N inputs will increase the ratio of denitrification rates to DNRA rates.

H2: I will measure field N₂O and N₂ emissions, soil NO₃⁻ and O₂ concentrations, and soil moisture in the treatment and control plots on a weekly basis to estimate annual N₂O and N₂ fluxes. I will measure net N mineralization and nitrification several times during the year to estimate NO₃⁻ supply. I expect that annual N₂ emissions will be important relative to annual N₂O emissions because of the dominance of N₂ over N₂O emissions at low soil O₂ concentrations that occur frequently in humid tropical forest soils. To study the effects of O₂ availability on denitrification in a more controlled environment, I will perform lab experiments with factorial combinations of four N addition (0, 2, 10, 50 kg ha⁻¹) and five O₂ (0, 5, 10, 15, 21%) treatments. I will use the ¹⁵N, acetylene inhibition, and N₂:Ar methods to measure N₂ production in the lab. I will also measure N₂O production and gross nitrification. I predict that N₂O:N₂ will be dominantly a function of soil O₂ availability, but the shape of this relationship will depend on direct effects of O₂ on denitrification and indirect effects on NO₃⁻ supply by nitrification.

Expected Results

This study will explore key controls on denitrification and be one of the first to use the N_2 :Ar method to measure N_2 production in upland soils. I became interested in this topic because N_2 production is widely recognized as a major gap in our understanding of the global N cycle. My original research will help fill this important gap and contribute to our understanding of N deposition effects in humid tropical forests. This new knowledge will help improve N cycling models to predict N_2O emissions for climate change and ozone depletion projections.

Cited Literature

- [1] E.A. Davidson, W.T. Swank, T.O. Perry, Applied and Env. Microbiology 52, 1286 (1986)
- [2] M.J. Prather *et al.*, *Climate Change 1994*, J.T. Houghton *et al.*, Eds. (Cambridge University Press, 1995), pp. 73-126.
- [3] P.A. Matson, W.H. McDowell, A.R. Townsend, and P.M. Vitousek, *Biogeoch.* 46, 67 (1999)
- [4] K.L. Weier, J.W. Doran, J.F. Power, and D.T. Walters, Soil Sci. Soc. of Am. J. 57, 66 (1993)
- [5] W.L. Silver, D.J. Herman, and M.K. Firestone, *Ecology* 82, 2410 (2001)
- [6] S.J. Hall and P.A. Matson, *Nature* **400**, 152 (1999)
- [7] H. Erickson, M. Keller, and E.A. Davidson, *Ecosystems* 4, 67 (2001)
- [8] P.A. Steudler et al., Global Biogeochemical Cycles 16, Article Number 1023 (2002)
- [9] S.J. Hall, G.P. Asner, and K. Kitayama, *Biogeoch.* 70, 27 (2004)
- [10] R.F. Keeling et al., Tellus 56B, 322 (2004)
- [11] W.H. Liu, R.F. Keeling, R.C. Rhew, and W.L. Silver, in prep.
- [12] W.L. Silver, A. Lugo, and M. Keller, Biogeoch. 44, 301 (1999)
- [13] J.M. Tiedje, A.J. Sexstone, D.D. Myrold, and J.A. Robinson, Anton. de Leeu. 48, 569 (1982)